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Regularity properties for p−dead core problems
and their asymptotic limit as p → ∞

João Vitor da Silva, Julio D. Rossi and Ariel M. Salort

Abstract

We study regularity issues and the limiting behavior as p → ∞ of non-negative solutions for
elliptic equations of p−Laplacian type (2 � p < ∞) with a strong absorption:

−Δpu(x) + λ0(x)uq
+(x) = 0 in Ω ⊂ R

N ,

where λ0 > 0 is a bounded function, Ω is a bounded domain and 0 � q < p− 1. When p is fixed,
such a model is mathematically interesting since it permits the formation of dead core zones,
that is, a priori unknown regions where non-negative solutions vanish identically. First, we turn
our attention to establishing sharp quantitative regularity properties for p−dead core solutions.
Afterwards, assuming that � := limp→∞ q(p)/p ∈ [0, 1) exists, we establish existence for limit
solutions as p → ∞, as well as we characterize the corresponding limit operator governing the
limit problem. We also establish sharp Cγ regularity estimates for limit solutions along free
boundary points, that is, points on ∂{u > 0} ∩ Ω where the sharp regularity exponent is given
explicitly by γ = 1/(1 − �). Finally, some weak geometric and measure theoretical properties as
non-degeneracy, uniform positive density, porosity and convergence of the free boundaries are
proved.

1. Introduction

Quasi-linear elliptic equations with free boundaries appear in a number of phenomena linked
through reaction–diffusion and absorption processes in pure and applied sciences. Some
remarkable problems are derived from models in chemical–biological processes, combustion
phenomena and population dynamics, just to mention a few examples. Regarding these studies,
an often more relevant problem is that arising from diffusion processes with sign constrain (the
well-known one-phase problems), which are in chemical–physical situations the only significant
case to be considered (cf. [4, 5, 7, 12, 20] and references therein for some motivation). A class
for such problems is given by{

−Qu(x) + f(u)χ{u>0}(x) = 0 in Ω

u(x) = g(x) on ∂Ω,
(1.1)

where Q is a quasi-linear elliptic operator in divergence form with p−structure for 2 � p < ∞
(cf. [10, 16, 33] for more details) and Ω ⊂ R

N is a regular and bounded domain. In this context
f is a continuous and increasing reaction term satisfying f(0) = 0 and 0 � g ∈ C0(∂Ω). In
models from applied sciences, f(u) represents the ratio of the reaction rate at concentration
u to the reaction rate at concentration one. Recall that, when the non-linearity f ∈ C1(Ω) is
locally p− 1 Lipschitz near zero (we say that f satisfies a Lipschitz condition of order p− 1 at
0 if there exist constants M, δ > 0 such that f(u) � Mup−1 for 0 < u < δ), it follows from the
Maximum Principle that non-negative solutions must be, in fact, strictly positive (cf. [44]).
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Figure 1. The dead-core set Ω0 illustrating the isothermal and irreversible catalytical
reaction process from (1.2).

Nevertheless, the function f may fail to be differentiable or even to decay fast enough at the
origin. For instance, if f(t) behaves as tq with 0 < q < p− 1, f fails to be Lipschitz of order
p− 1 at the origin; in this case, problem (1.1) has an absence of Strong Minimum Principle,
that is, non-negative solutions may vanish completely within an a priori unknown region of
positive measure Ω0 ⊂ Ω known as the Dead Core set (cf. Dı́az’s Monograph [12, Chapter 1]
for a survey about this subject). As an illustration of the previous discussion (cf. [4, 5, 17,
40]) for a domain Ω ⊂ R

N , certain (stationary) isothermal and irreversible catalytical reaction
processes might be mathematically modeled by boundary value problems of reaction–diffusion
type of the form {

−Δu(x) + λ0(x)uq
+(x) = 0 in Ω,

u(x) = 1 on ∂Ω,
(1.2)

where in this context u represents the density of a chemical reagent (or gas) and the non-
Lipschitz kinetics corresponds to the qth order isothermal of Freundlich. Moreover, λ0 > 0
is known as Thiele Modulus and it controls the ratio of the reaction rate to the diffusion-
convection rate. As before, when q ∈ (0, 1), the strong absorption due to chemical reaction may
be faster than the supply caused by diffusion across the boundary, which can lead the chemical
reagent to vanish in some subregions (the dead-cores), namely Ω0 := {x ∈ Ω : u(x) = 0} ⊂ Ω.
In such zones no chemical reaction takes place (see Figure 1). For this reason, the knowledge
of the qualitative/quantitative behavior of the dead-core solutions plays a key role in chemical
engineering and other applied fields.

Dead core type problems have received growing attention throughout the last four decades,
including: existence of solutions, formation of dead core sets, properties of localization,
effectiveness factors among others. A summarized literature can be found in the seminal works
of Bandle et al. [7, 8], Dı́az et al. [12, 13, 14, 15], Pucci–Serrin [29] and references therein. In
spite of the fact that there is a large amount of literature on dead core problems, quantitative
regularity properties for such models with p−Laplacian type structure are far less studied
(compare with da Silva et al. in [36, 39] for instance). This fact is one of our starting points
for the current study.
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In this article we study diffusion problems governed by the p−Laplacian operator for
which a Minimum Principle is not available. Particularly, we are interested in prototypes
coming from combustion problems, chemical models (like catalytical processes in chemical
engineering) or enzymatic kinetics where the existence of dead cores plays an important role
in the understanding of such a chemical–physical models (cf. [4, 5, 19, 20]). The model to be
analyzed here is given by{

−Δpup(x) + λ0(x)(up)
q
+(x) = 0 in Ω,

up(x) = g(x) on ∂Ω.
(1.3)

Here Δpu = div(|∇u|p−2∇u) stands for the p-Laplace operator, λ0 > 0 is a bounded function
(bounded away from zero and from infinity) and 0 � q < p− 1 is the order of reaction. The
boundary datum is assumed to be continuous and non-negative, 0 � g ∈ C0(∂Ω). In this
context, (1.3) is said to be an equation with strong absorption condition and ∂{u > 0} ∩ Ω
is (the physical) free boundary of the problem.

Observe also that the unique weak solution (cf. [12, Theorem 1.1 ]) to (1.3) appears when
considering minimizers of the following (zero) constrained non-linear p−obstacle type problem

min
{ˆ

Ω

(
1
p
|∇v(x)|p + λ0(x)

vq+1

q + 1
χ{v>0}(x)

)
dx : v ∈ W 1,p(Ω), v � 0 and v = g on ∂Ω

}
.

(1.4)

Variational problems like (1.4) were widely developed in the last decades, see [22, 24, 25] for
some examples on this subject.

The study of (1.3) is meaningful, not only for applications, but also for its relation with
several mathematical free boundary problems appearing in the literature (cf. Alt–Phillips [1],
Dı́az [12], Friedman–Phillips [17] and Phillips [28], Shahgholian et al. [22, 24] for problems
with variational structure and da Silva et al. [34] and Teixeira [42] for a non-variational
counterpart; we also refer the reader to da Silva et al. [35, 36] for similar problems in parabolic
settings).

A fundamental issue appearing in free boundary problems consists in inferring which is the
optimal expected regularity to weak solutions. For example, if we fix 0 < q < p− 1 and R > 0,
the one dimensional profile u : (−R,R) → R+ given by

u(x) = cx
p

p−1−q

+

(for an appropriate constant c = c(p, q) > 0) is a weak solution to −(|u′|p−2u′)′ + uq = 0 in
(−R,R). It is known that in general, solutions to (1.3) are C1,γ

loc for some γ ∈ (0, 1) (cf. [10, 16,
43] for more details). However, for such an example, fixed p > 1, one observes that u ∈ C

�α�,β
loc ,

where

α(p, q) :=
p

p− 1 − q
and β(p, q) :=

p

p− 1 − q
−
⌊

p

p− 1 − q

⌋
.

Here �·	 stands for the integer part. Note that when q > 0,

α(p, q) =
p

p− q − 1
>

p

p− 1
⇒ Improved regularity estimates along the free boundary.

In fact, Cα�

loc regularity with α� := p
p−1 = 1 + 1

p−1 is the optimal regularity expected (and proved
in some cases) for weak solutions of the p−Laplacian operator with bounded right-hand side,
see [3] for a systematic treatment of this subject (called Cp′

regularity conjecture) and compare
with [2] in the context of p−obstacle problems. Furthermore, note that α(p, q) > 2 provided
that q > max{0, p−2

2 }, which means that it is a classical solution, even across the free boundary.
The proper understanding of this phenomenon should yield decisive geometric information
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about the solution and its free boundary, and this is the main goal (of the first part) of our
investigation. Therefore, we will show that any solution to (1.3) behaves (near its free boundary)
like the previous one-dimensional example.

First, we prove which is the growth rate of solutions leaving their free boundaries. Throughout
this manuscript universal constants are the ones depending only on structural and physical
parameters of the problem, that is, N, p, q,Ω′ and the bounds for λ0.

Theorem 1.1 (Strong non-degeneracy). Let u be a non-negative, bounded weak solution
to (1.3), Ω′ � Ω and let x0 ∈ {u > 0} ∩ Ω′. Then there exists a universal constant C0 > 0 such
that for all 0 < r < min{1,dist(Ω′, ∂Ω)} there holds

sup
∂Br(x0)

u(x) � C0

(
N, p, q, inf

Ω
λ0(x)

)
r

p
p−1−q .

Next, we prove the following improved regularity estimate at free boundary points:

Theorem 1.2 (Improved regularity along the free boundary). Let u be a non-negative,
bounded weak solution to (1.3), Ω′ � Ω and x0 ∈ ∂{u > 0} ∩ Ω′. Then, there exists a universal
constant C1 = C1(N, p, q, infΩ λ0(x)) > 0 such that

u(x) � C1‖u‖L∞(Ω)|x− x0|
p

p−1−q

for all 0 < |x− x0| � min{1,dist(Ω′, ∂Ω)}.

The insight for proving Theorem 1.2 comes from an (finer) asymptotic blow-up analysis
combined with a sharp control of the growth rate of solutions close to the free boundary, and
it was inspired in [22, 24, 41, 42]. Heuristically, for an appropriate family of normalized and
scaled solutions, if the ‘magnitude’ of the Thiele modulus is uniformly controlled (with small
enough bounds), then we must expect the following iterative geometric decay

sup
B 1

2k
(x0)

u(x) � C�

(
N, p, q, inf

Ω
λ0(x)

)
2−

kp
p−1−q ∀ x0 ∈ ∂{u > 0} ∩ Ω′ and ∀k ∈ N,

which will yield the aimed geometric regularity estimate along free boundary points (see
Section 3.2).

Observe that, using our regularity estimates from Theorem 1.2 and Theorem 1.1, we are
able to show that any weak solution to (1.3) is ‘confined’ between the graph of two suitable
multiples of dist(·, ∂{u > 0}) p

p−1−q , that is,

c�[dist(x0, ∂{u > 0})] p
p−1−q � u(x0) � c�[dist(x0, ∂{u > 0})] p

p−1−q ,

where x0 ∈ {u > 0} is close enough to the free boundary and c�, c
� > 0 are universal constants

(depending on N , p, q, λ0 and the uniform bound for u), see Corollaries 3.1 and 3.7 for more
details.

Recall that our model (1.3) involves an ‘ellipticity factor’ deteriorating on an unknown set,
the free boundary. Particularly, this phenomenon implies less diffusivity for the model near
such a set and consequently, regularity properties of solutions become more delicate to obtain.
In our case, such phenomenon occurs along the set of critical points of solutions, that is,

CΩ[u] := {x ∈ Ω : |∇u(x)| = 0} .
Since we can re-write our prototype operator as

Δpu = |∇u|p−2Δu + (p− 2)|∇u|p−4
N∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
,
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(here we are talking about viscosity solutions) solutions to (1.3) can only be ‘irregular’ if |∇u|
is small enough, because the operator degenerates as |∇u| ≈ 0. Surprisingly, for the model (1.3)
we can control (uniformly) the decay of the gradient at free boundary points via a sophisticated
iterative mechanism. In a precise manner (see Lemma 3.8 for the details), for any weak solution
to (1.3) it holds that

(i) CΩ[u] ⊂ {u = 0} ∩ Ω,
(ii) supBr(x0) |∇u| � c∗r

1+q
p−1−q , ∀x0 ∈ ∂{u > 0} ∩ Ω′ and r � 1, for a universal constant

c∗ > 0.

The approach employed in our article is flexible enough to yield several other interesting
applications concerning regularity at free boundary points. Among these we establish a new
estimate in the L2−average sense for p−dead core solutions. More precisely (see Lemma 3.10),
there exists a constant M = M(N, p, q, λ0) such that, for any weak solution to (1.3) and any
x0 interior free boundary point, there holds( 

Br(x0)

(|∇u(x)|p−2|D2u(x)|)2dx
) 1

2

� Mr
pq

p−1−q ∀ 0 < r � 1.

The second part of our article is focused in analyzing the asymptotic behavior as p and q
diverge. Here we will assume that the boundary condition is Lipschitz continuous, g ∈ Lip(∂Ω),
and note that it can be extended as a Lipschitz function to the whole Ω with the same Lipschitz
constant, see [6]. Recently, motivated by game theory (‘Tug of-war games’), in [21] the following
problem is studied {

Δp up(x) = f(x) in Ω,

up(x) = g(x) on ∂Ω,

with a forcing term f � 0. In this context, {up} converges, up to a subsequence, to a limiting
function u∞, which fulfills the following problem in the viscosity sense{

min
{
Δ∞ u∞(x), |∇u∞(x)| − χ{f>0}(x)

}
= 0 in Ω,

u∞(x) = g(x) on ∂Ω,

where Δ∞u(x) := ∇u(x)TD2u(x)∇u(x) is the well-known ∞−Laplace operator (cf. [6] for a
survey). At this point, a natural question is the expected behavior of the p−dead core solutions
and their free boundaries as p → ∞. That is precisely the subject of the second part of this
manuscript: we turn our attention to the study of several geometric and analytical properties for
limit solutions and their free boundaries. Motivated by the analysis of the asymptotic behavior
of several variational problems (see for example [21, 26, 30–32, 37, 38]), we will focus our
attention on the analysis under the condition that the diffusivity degree of the operator and
the reaction factor of the model are large enough. Intuitively, we would like to understand and
characterize the physical process when p and q diverge in a controlled manner. We will also
assume in this limit procedure that the boundary datum g is a fixed Lipschitz function.

In our first result, we prove the convergence of the family of p−dead core solutions, as well as
we deduce the corresponding limit operator (in non-divergence form) driving the limit equation.

Theorem 1.3 (Limiting equation). Let (up)p�2 be the family of solutions to (1.3) with
g ∈ Lip(∂Ω). Assume 	 := limp→∞ q(p)/p ∈ [0, 1) exists. Then, up to a subsequence, up → u∞
uniformly in Ω. Furthermore, such a limit fulfills⎧⎪⎨

⎪⎩
max

{−Δ∞u∞, −|∇u∞| + u�
∞
}

= 0 in {u∞ > 0} ∩ Ω,

−Δ∞u∞ = 0 in {u∞ = 0} ∩ Ω,
u∞ = g on ∂Ω,

(1.5)

in the viscosity sense.
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We also obtain improved regularity estimates along a free boundary point for the limit
profiles.

Theorem 1.4 (Sharp growth for limit solutions). Assume 	 := limp→∞ q(p)/p ∈ [0, 1)
exists. Let u∞ be a uniform limit of the family of solutions up of (1.3) with g ∈ Lip(∂Ω)
and Ω′ � Ω. Then, for any x0 ∈ ∂{u∞ > 0} ∩ Ω′ and 0 < r � 1 the following estimate holds:

sup
Br(x0)

u∞(x) � 2 · 2 1
1−� (1 − 	)

1
1−� r

1
1−� .

Finally, we obtain a sharp lower control on how limit solutions detach from their free
boundaries.

Theorem 1.5 (Strong non-degeneracy for limit solutions). Assume 	 := limp→∞ q(p)/p ∈
[0, 1) exists. Let u∞ be a uniform limit to solutions up of (1.3) with g ∈ Lip(∂Ω) and Ω′ � Ω.
Then, for any x0 ∈ ∂{u∞ > 0} ∩ Ω′ and any 0 < r � 1, the following estimate holds:

sup
Br(x0)

u∞(x) � (1 − 	)
1

1−� r
1

1−� .

In contrast with the previous results, we do not expect (in general) a point-wise gradient
estimate for limit solutions. However, we are able to prove the following estimate in average
for the gradient.

Theorem 1.6 (An average gradient estimate for limit solutions). Assume 	 :=
limp→∞

q(p)
p ∈ [0, 1) exists. Let u∞ be a uniform limit to solutions up of (1.3) with g ∈ Lip(∂Ω)

and Ω′ � Ω. Then, for any x0 ∈ ∂{u∞ > 0} ∩ Ω′ and any 0 < r � 1, the following estimate
holds:  

Br(x0)

|∇u∞(x)|dx � 2 · 2 �
1−� (1 − 	)

1
1−� r

1
1−� .

We also present several other quantitative/qualitative properties for free boundaries of limit
solutions, among which we include a necessary condition in order to have convergence of the
free boundaries

∂{up > 0} → ∂{u∞ > 0} as p → ∞,

in the sense of the Hausdorff distance (see Theorem 4.8). Another important point which
we deal with concerns regularity of certain limit free boundary points under an appropriate
geometric condition (see Theorem 4.13). At the end we put forward some examples in order to
illustrate some features of the limit problem.

2. Preliminaries

In this section we introduce some preliminary results that we will use throughout the article.

Notation 2.1. We adopt the following notations.

(i) u+ = max{u, 0}.
(ii) F(u0,Ω) := ∂{u0 > 0} ∩ Ω will mean the free boundary.
(iii) LN denotes the N -dimensional Lebesgue measure.
(iv) Sr[u](x0) := supBr(x0) u(x) and Ir[u](x0) := infBr(x0) u(x). The center of the ball is

omitted when x0 = 0.
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Definition 2.2 (Weak solution). u ∈ W 1,p
loc (Ω) is a weak super-solution (respectively, sub-

solution) to

−Δpu = Ψ(x, u) in Ω, (2.1)

if for all 0 � ϕ ∈ C1
0 (Ω) it holdsˆ

Ω

|∇u|p−2∇u · ∇ϕ(x) dx �
ˆ

Ω

Ψ(x, u)ϕ(x) dx
(

respectively, �
ˆ

Ω

Ψ(x, u) dx
)
.

Finally, u is a weak solution to (2.1) when it is simultaneously a super-solution and a sub-
solution.

Since we are assuming that p � 2, then (1.3) is not singular at points where
the gradient vanishes. Consequently, the mapping x �→ Δpφ(x) = |∇φ(x)|p−2Δφ(x) +
(p− 2)|∇φ(x)|p−4Δ∞φ(x) is well defined and continuous for all φ ∈ C2(Ω).

Next, we introduce the notion of viscosity solution to (1.3). We refer to the survey [11] for
the general theory of viscosity solutions.

Definition 2.3 (Viscosity solution). An upper (respectively, lower) semi-continuous
function u : Ω → R is said to be a viscosity sub-solution (respectively, super-solution) to (1.3) if,
whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that u− φ has a strict local maximum (respectively,
minimum) at x0, then

−Δpφ(x0) + λ0(x)φq
+(x0) � 0 (respectively, � 0).

Finally, u ∈ C(Ω) is said to be a viscosity solution to (1.3) if it is simultaneously a viscosity
sub-solution and a viscosity super-solution.

Definition 2.4 (Viscosity solution for the limit equation). A non-negative function
u ∈ C(Ω) is said to be a viscosity solution to (1.5) if:

(1) it is a viscosity sub-solution, that is, whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that
u(x0) = φ(x0) and u(x) < φ(x), when x �= x0, then

−Δ∞φ(x0) � 0 and − |∇φ(x0)| + φ�
+(x0) � 0;

(2) it is a viscosity super-solution, that is, whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that
u(x0) = φ(x0) and u(x) > φ(x), when x �= x0, then

−Δ∞φ(x0) � 0 or − |∇φ(x0)| + φ�
+(x0) � 0.

The following Harnack inequality will be useful for our approach.

Theorem 2.5 (Serrin’s Harnack inequality [33, Theorems 6 and 9]). Let f ∈ L∞(B1) and
u be a non-negative weak solution to −Δpu(x) = f(x) in B1. Then there exists a constant
C = C(N, p) > 0 such that

S 1
2
[u] � C(N, p)

(
I 1

2
[u] + ‖f‖

1
p−1

L∞(B1)

)
.

Let us recall an important inequality from Nonlinear Analysis.

Theorem 2.6 (Morrey’s inequality). Let N < p � ∞. Then for u ∈ W 1,p(Ω), there exists
a constant C(N, p) > 0 such that

‖u‖
C

0,1−N
p (Ω)

� C(N, p)‖∇u‖Lp(Ω).
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We must highlight that the dependence of C on p does not deteriorate as p → ∞. In fact,

C(N, p) :=
2c(N)

|∂B1| 1p
(

p− 1
p−N

) p−1
p

,

where c(N) > 0 is a constant that depends only on the dimension.
We also use the following comparison result for weak solutions (see [12, Theorem 1.1]).

Lemma 2.7 (Comparison Principle). Let λ0 ∈ L∞(Ω) and f ∈ C([0,∞)) a non-negative
and non-decreasing function. Assume that

−Δpu + λ0(x)f(u)χ{u>0} � 0 � −Δpv + λ0(x)f(v)χ{v>0} in Ω

in the weak sense. If v � u in ∂Ω then v � u in Ω.

The following lemma gives a relation between weak and viscosity sub and super-solutions to
(1.3).

Lemma 2.8. A continuous weak sub-solution (respectively, super-solution) u ∈ W 1,p
loc (Ω) to

(1.3) is a viscosity sub-solution (respectively, super-solution) to

− [|∇u(x)|p−2Δu(x) + (p− 2)|∇u(x)|p−4Δ∞u
]

= −λ0(x)uq
+(x) in Ω.

Proof. Let us proceed for the case of super-solutions. Fix x0 ∈ Ω and φ ∈ C2(Ω) such that
φ touches u from below, that is, u(x0) = φ(x0) and u(x) > φ(x) for x �= x0. Our goal is to show
that

− [|∇φ(x0)|p−2Δφ(x0) + (p− 2)|∇φ(x0)|p−4Δ∞φ(x0)
]
+ λ0(x0)φ

q
+(x0) � 0.

Let us suppose, for the sake of contradiction, that the inequality does not hold. Then, by
continuity there exists r > 0 small enough such that

− [|∇φ(x)|p−2Δφ(x) + (p− 2)|∇φ(x)|p−4Δ∞φ(x)
]
+ λ0(x)φq

+(x) < 0,

provided that x ∈ Br(x0). Now, we define the function

Ψ(x) := φ(x) +
1

100
m, where m := inf

∂Br(x0)
(u(x) − φ(x)).

Note that Ψ verifies Ψ < u on ∂Br(x0), Ψ(x0) > u(x0) and

−ΔpΨ(x) < −λ0(x)φq
+(x). (2.2)

By extending by zero outside Br(x0), we may use (Ψ − u)+ as a test function in (1.3). Moreover,
since u is a weak super-solution, we obtainˆ

{Ψ>u}
|∇u|p−2∇u · ∇(Ψ − u)dx � −

ˆ
{Ψ>u}

λ0(x0)u
q
+(x)(Ψ − u)dx. (2.3)

On the other hand, multiplying (2.2) by Ψ − u and integrating by parts we getˆ
{Ψ>u}

|∇Ψ|p−2∇Ψ · ∇(Ψ − u)dx <−
ˆ
{ψ>u}

λ0(x)φq
+(x)(Ψ − u)dx. (2.4)

Next, subtracting (2.3) from (2.4) we obtainˆ

{Ψ>u}

(|∇Ψ|p−2∇Ψ − |∇u|p−2∇u
) · ∇(Ψ − u)dx <

ˆ

{ψ>u}

λ0(x)
(
φq

+(x) − uq
+(x)

)
(Ψ − u)dx < 0.
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This implies that ˆ

{Ψ>u}

|∇(Ψ − u)|pdx < 0.

This is a contradiction that proves the desired result.
Similarly, one can prove that a continuous weak sub-solution is a viscosity sub-solution. �

3. Regularity properties for fixed (p, q)

3.1. Non-degeneracy of solutions

This section is devoted to prove a weak geometrical property which plays a key role in the
description of solutions to dead core type problems, namely the non-degeneracy of solutions.

Proof of Theorem 1.1. Note that, due to the continuity of solutions, we have to prove the
estimate just at points in {u > 0} ∩ Ω.

First of all, let us consider the scaled function:

ur(x) :=
u(x0 + rx)

r
p

p−1−q

.

It is easy to show that it is a weak sub-solution to the equation

−Δpur(x) + λ̂0(x)(ur)
q
+(x) = 0 in B1,

with λ̂0(x) := λ0(x0 + rx).
Now, let us introduce the auxiliary barrier function Ψ(x) := C0|x|

p
p−1−q for a positive constant

C0 given by

C0 :=
[
inf
Ω

λ0(x)
(p− 1 − q)p

pp−1(pq + N(p− 1 − q))

] 1
p−1−q

.

A straightforward computation shows that

−ΔpΨ(x) + λ̂0 (x)Ψq(x) � 0 in B1 (pointwisely).

Finally, if ur � Ψ on the whole boundary of B1, then the Comparison Principle (Lemma 2.7)
implies

ur � Ψ in B1,

which contradicts the assumption that ur(0) > 0. Therefore, there exists a point y ∈ ∂B1 such
that

ur(y) > Ψ(y) = C0,

and scaling back we finish the proof of the theorem. �

As a consequence of Theorem 1.1 we obtain the following growth near the free boundary:

Corollary 3.1 (Sharp growth). Let u be a nonnegative, bounded weak solution to (1.3)
in Ω and Ω′ � Ω. Then, there exists a universal constant C� > 0 such that

u(x0) � C�[dist(x0, ∂{u > 0})] p
p−1−q

for any x0 ∈ {u > 0} ∩ Ω′.
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Proof. Suppose that C� does not exist. Then there exist a sequence xk ∈ {u > 0} ∩ Ω′ with

dk := dist(xk, ∂{u > 0} ∩ Ω′) → 0 as k → ∞ and u(xk) � k−1d
p

p−1−q

k .

Now, let us define the auxiliary function vk : B1 → R by

vk(y) :=
u(xk + dky)

d
p

p−1−q

k

.

It is easy to check that

(i) vk � 0 in B1;
(ii) −Δpvk + λ0(xk + dky)v

q
k = 0 in B1 in the weak sense;

(iii) vk(y) � C(N, p)d
1−N

p

k + 1
k ∀ y ∈ B1 according to local Hölder regularity of weak solu-

tions, see Theorem 2.6.

From the Non-degeneracy Theorem 1.1 and the last sentence we obtain that

0 < C0

(
1
2

) p
p−1−q

� sup
B 1

2

vk(y) � max{1,C(N, p)}
(
d
1−N

p

k +
1
k

)
→ 0 as k → ∞,

which clearly yields a contradiction. This concludes the proof. �

The Non-degeneracy estimate from Corollary 3.1 implies in particular a non-degeneracy
property in measure. As it was commented in the introduction, this estimate is useful
in several qualitative contexts of the theory of free boundary problems. We refer to [39,
Theorem 4.4] for a proof.

Theorem 3.2 (Non-degeneracy in measure). Let u be a weak solution to (1.3). Given
Ω′ ⊂ Ω there exist ρ0 > 0 and κ > 0 depending only on Ω′ and universal parameters such that

LN
(
Ω′ ∩ {0 < u(x) < ρ

p
p−1−q }

)
� κρ for any ρ � ρ0.

3.2. Growth rate near the free boundary

Before starting the proof of Theorem 1.2 let us introduce a class of functions and sets which
play an essential role in our strategy. Our approach is inspired in [22, 24] (cf. [34, 35, 36, 39]
for a similar strategy in dead core settings).

Definition 3.3. We say that u ∈ Jp(B1) if

(i) ‖div(|∇u|p−2∇u)‖L∞(B1) = ‖λ0u
q
+‖L∞(B1) � 1;

(ii) 0 � u � 1;
(iii) u(0) = 0.

Next, we define for u ∈ Jp(B1) the following set with a ‘doubling type property’

D[u] :=
{
j ∈ N ∪ {0} : 2

p
p−1−q max

{
1,

1
C0

}
S 1

2j+1
[u] � S 1

2j
[u]
}
, (3.1)

where in this context C > 0 is the universal constant from the non-degeneracy property given in
Theorem 1.1. Moreover, observe that D[u] is not empty since j = 0 ∈ D[u] due to Theorem 1.1:

S 1
2
[u] � C0

(
1
2

) p
p−1−q

� C0

(
1
2

) p
p−1−q

S1[u] ⇒ S1[u] � 2
p

p−1−q max
{

1,
1
C0

}
S 1

2
[u].
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The following results are the key in order to prove Theorem 1.2. Heuristically, they state
that as the Thiele modulus becomes flat enough, the limiting configuration of the p−dead-core
problem imposes, according to Harnack inequality, that any solution must be identically zero.
Thus, by compactness methods, solutions to (1.3) become very flat with a sharp geometric
decay (near free boundary points) provided λ0 is under control.

Lemma 3.4. There exists a positive constant C1 = C1(N, p, q, ‖λ0‖L∞(Ω)) such that

S 1
2j+1

[u] � C1

(
1
2j

) p
p−1−q

(3.2)

for all u ∈ Jp(B1) and j ∈ D[u].

Proof. We proceed by contradiction. Suppose that the thesis of the lemma fails to hold.
Then for each k ∈ N we may find uk ∈ Jp(B1) and jk ∈ D[u] such that

S 1
2jk+1

[uk] > k

(
1

2jk

) p
p−1−q

.

Now, define the auxiliary function

vk(x) :=
uk( 1

2jk
x)

S 1
2jk+1

[uk]
in B1,

and note that vk fulfills

(i) 0 � vk(x) �
S 1

2jk
[uk]

S 1
2jk+1

[uk] � 2
p

p−1−q max{1, 1
C0

} form (3.1) and vk(0) = 0 for all k;

(ii) S 1
2
[vk] = 1 for all k;

(iii) −div(|∇vk|p−2∇vk) + 1
2jk.p

1

Sp−1−q
1

2jk+1
[uk]

λ0( 1
2jk

x)(vk)
q
+ = 0.

Moreover, by the contradiction assumption we get∥∥∥∥∥∥
1

2jk.p
1

Sp−1−q
1

2jk+1
[uk]

λ0

(
1

2jk
x

)
(vk)

q
+(x)

∥∥∥∥∥∥
L∞(B1)

�
(

2p

k

) 1
p−1−q

max
{

1,
1
C0

}
‖λ0‖L∞(B1).

Invoking the Harnack’s inequality given in Theorem 2.5 we obtain

1 = S 1
2
[vk] � C(N, p)

⎡
⎣I 1

2
[vk] +

p−1

√(
2p

k

) 1
p−1−q

max
{

1,
1
C0

}
‖λ0‖L∞(B1)

⎤
⎦ ,

which clearly gives a contradiction as k → ∞. This concludes the proof. �

Theorem 3.5. There exists a positive constant C2 = C2(N, p, q, ‖λ0‖L∞(Ω)) such that for
all u ∈ Jp(B1) it holds

u(x) � C2|x|
p

p−1−q .

Proof. First, we claim that

S 1
2j

[u] � C1

(
1

2j−1

) p
p−1−q

∀ j ∈ N, (3.3)
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where C1 is the constant from Lemma 3.4. We will prove this claim by induction. Without loss
of generality we can assume that C2 � 1, and then (3.3) holds for j = 0. Suppose that (3.3)
holds for some j ∈ N. We will verify the (j + 1)th step. In fact, if j ∈ D[u] then the result holds
by Lemma 3.4. On the other hand, if j /∈ D[u], from the inductive hypothesis we get

S 1
2j+1

[u] �
(

1
2

) p
p−1−q

S 1
2j

[u] �
(

1
2

) p
p−1−q

C1

(
1

2j−1

) p
p−1−q

= C1

(
1
2j

) p
p−1−q

,

and then (3.3) holds for all j ∈ N. Finally, given r ∈ (0, 1) let j ∈ N be the greatest integer
such that 1

2j+1 � r < 1
2j . Then,

Sr[u] � S 1
2j

[u] � C1

(
1

2j−1

) p
p−1−q

� C2(N, p, q, ‖λ0‖L∞(Ω))r
p

p−1−q (3.4)

and the proof is finished. �

Next, we present a universal normalization and scaling procedure in order to place solutions
of (1.3) in an appropriated flatness scenery, which allows us to apply Lemma 3.4. This reasoning
is inspired in the flatness devise introduced in [41, 42].

Remark 3.6 (Flatness scenery). Note that Lemma 3.4 assures the existence of a universal
constant 0 < τ0 � 1 (small enough) such that if u ∈ Jp(B1) with∥∥div(|∇u|p−2∇u)

∥∥
L∞(B1)

=
∥∥λ0u

q
+

∥∥
L∞(B1)

� τ0,

then

S 1
2j+1

[u] � Cτ0(p, q,N)
(

1
2j

) p
p−1−q

.

Therefore, we are able to select τ0 � 1 such that

Cτ0(p, q,N) =
2

2
p

p−1−q

C0.

Particularly, coming back to estimate (3.4), we obtain

Sr[u] � 2 · 2 p
p−1−q C0r

p
p−1−q . (3.5)

We now are ready to prove Theorem 1.2.

Proof of Theorem 1.2. In order to prove Theorem 1.2, we have to reduce its hypotheses
to the framework of Theorem 3.5. We assume without loss of generality that B1 � Ω. For
x0 ∈ ∂{u > 0} ∩B1 we will proceed with a normalization and intrinsic scaling argument: let
us define

v(x) :=
u (x0 + R0x)

κ0
in B1

for constants κ0,R0 > 0 to be determined universally a posteriori.
From the equation satisfied by u, we easily verify that v fulfills

−Δpv + λ̂0(x)vq+(x) = 0,

in the weak sense for λ̂0(x) := Rp
0

κp−1−q
0

λ0(x0 + R0x). Now, let τ0 > 0 be the greatest universal
constant pointed out in Remark 3.6 such that Lemma 3.4 holds provided that

‖div(|∇u|p−2∇u)‖L∞(B1) � τ0.
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By choosing

κ0 := ‖u‖L∞(Ω) and 0 < R0 < min

⎧⎨
⎩1,

dist(B1, ∂Ω)
2

, p

√
τ0κ

p−1−q
0

‖λ0‖L∞(Ω)

⎫⎬
⎭ , (3.6)

then v fits into the framework of Theorem 3.5. Hence, there exists C2 = C2(N, p, q, infΩ λ0(x))
such that

v(x) � C2|x|
p

p−1−q .

By scaling back, we obtain the conclusion of Theorem 1.2. �

As a consequence of Theorem 1.2 we obtain a finer decay near free boundary points. Precisely,
a dead core solution u arrives at its null set as a suitable power of the distance up to the free
boundary.

Corollary 3.7. Let u be a bounded weak solution to (1.3) and Ω′ � Ω. Then, there is
a constant C� = C�(N, p, q, infΩ λ0(x)) such that, for any point x0 ∈ {u > 0} ∩ Ω′ such that
dist(x0, ∂{u > 0}) � R0

2 , there holds

u(x0) � C�[dist(x0, ∂{u > 0})] p
p−1−q .

Proof. Fix x0 ∈ {u > 0} ∩ Ω′ and denote d := dist(x0, ∂{u > 0}). Now, select z0 ∈ ∂{u > 0}
a free boundary point which achieves the distance, that is, d = |x0 − z0|. From Theorem 1.2
we have that

u(x0) � sup
Bd(x0)

u(x) � sup
B2d(z0)

u(x) � C�
(
N, p, q, inf

Ω
λ0(x)

)
d

p
p−1−q .

This finishes the proof. �

By using an argument based on Serrin’s Harnack inequality, the first and third author
established in [39, Theorem 1.1], for a more general class of p−Laplacian type operators,
an alternative version for the growth estimates close to the free boundary points which reads
as

sup
Br(x0)

u(x) � C� max
{

inf
Br(x0)

u(x), r
p

p−1−q

}
,

for a universal constant C� > 0 and all 0 < r < min{1, dist(x0,∂Ω)
2 }.

Here we have decided to adopt the iterative geometric decay, namely Lemma 3.4, due to its
sharp and explicit representation for the universal constants involved in its estimate.

3.3. Applications

In this section we present a number of interesting applications of our previous results. Our first
application establishes a similar growth rate for the gradient of functions u ∈ Jp(B1).

Lemma 3.8. There exists a constant C3 = C3(N, p, q, λ0) > 0 such that for all u ∈ Jp(B1)
there holds

|∇u(x)| � C3|x|
1+q

p−1−q ∀ x ∈ B 1
2
.
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Proof. As previously, it is enough to prove the following estimate

S 1
2j+1

[|∇u|] � max

{
C

(
1
2j

) 1+q
p−1−q

,

(
1
2

) 1+q
p−1−q

S 1
2j

[|∇u|]
}
, (3.7)

for all j ∈ N and a constant C = C(N, p, q, λ0). Suppose, arguing by contradiction, that (3.7)
is not true. Then, there exists uj ∈ Jp(B1) such that

S 1
2j+1

[|∇uj |] � max

{
j

(
1
2j

) 1+q
p−1−q

,

(
1
2

) 1+q
p−1−q

S 1
2j

[|∇uj |]
}
. (3.8)

Now, we define the auxiliary function

vj(x) :=
2juj( 1

2j )
S 1

2j+1
[|∇uj |] for x ∈ B1.

Hence, by using (3.2) and (3.8) we get

0 � vj(x) � 2jC1(2−j)
p

p−1−q

S 1
2j+1

[|∇uj |] � C1

j
for x ∈ B1.

Furthermore, S 1
2
[|∇vj |] = 1 and S1[|∇vj |] � 2

1+q
p−1−q . We also have that

−Δpvj + λ̂j
0(x)(vj)

q
+(x) = 0 in B1

in the weak sense, where

λ̂j
0(x) :=

1
2j(1+q)

1
Sp−1−q

1
2j+1

[|∇uj |]
λj

0

(
1
2j

x

)
.

Hence, we get that ∥∥∥λ̂j
0(vj)

q
+

∥∥∥
L∞(B1)

� Cq sup
B1

λ0(x)
(

1
j

)p−1

.

Finally, by invoking the uniform gradient estimates from [10, 16, 43] we obtain

1 = S 1
2
[|∇vj |] � C(N, p)

[
‖vj‖L∞(B1) +

∥∥∥λ̂j
0(vj)

q
+

∥∥∥ 1
p−1

L∞(B1)

]
� C∗

(
1
j

+
1
j

)
→ 0 as j → ∞,

which clearly yields a contradiction and the lemma is proved. �

Remark 3.9. Similarly to Remark 3.6, we obtain for any x0 ∈ ∂{u > 0} ∩ Ω′ and r � 1 the
following

sup
Br(x0)

|∇u(x)| � C(N, p, q, λ0)r
1+q

p−1−q , (3.9)

where in this case we are able to choose C(N, p, q, λ0) = 2
1+q

p−1−q C0.

We stress that with a similar strategy one can estimate the L2−norm of |∇u(x)|p−2|D2u(x)|,
which may not exist point-wisely.

Lemma 3.10 (Estimate in L2−average). For every u ∈ Jp(B1) with p > 2 and x0 ∈ ∂{u >
0} ∩B 1

2
there exists M = M(N, p, q, λ0) such that( 

Br(x0)

(|∇u(x)|p−2|D2u(x)|)2dx
) 1

2

� Mr
pq

p−1−q .
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Proof. Note that by translation and scaling we might assume that x0 = 0. Now, let us
define

Ŝr[u] :=
( 

B1

(|∇u(rx)|p−2|D2u(rx)|)2dx
) 1

2(p−1)

.

As before, it suffices to prove that there exists a universal constant C∗ such that

Ŝ 1
2k+1

[u] � max

{
C∗

(
1
2k

) pq
(p−1)(p−1−q)

,

(
1
2

) pq
(p−1)(p−1−q)

Ŝ 1
2k

[u]

}
∀ k ∈ N and 0 < r � 1

2
.

(3.10)

As before, we proceed by contradiction and assume that there exist uk ∈ Jp(B1) and jk ∈ N

such that (3.10) does not hold. Therefore,

Ŝ 1
2jk+1

[uk] � max

{
k

(
1

2jk

) pq
(p−1)(p−1−q)

,

(
1
2

) pq
(p−1)(p−1−q)

Ŝ 1
2jk

[uk]

}

� max

{
k

(
1

2jk

) p
p−1−q

,

(
1
2

) pq
(p−1)(p−1−q)

Ŝ 1
2jk

[uk]

}
.

Now, let us define the scaled and ‘normalized’ function vk : B1 → R by

vk(x) :=
uk( 1

2jk
x)

Ŝ 1
2jk+1

[uk]
.

Thus, it is easy to verify that

(i) ‖vk‖L∞(B1) � C
k ;

(ii) Ŝ 1
2
[vk] = 1;

(iii) Ŝ1[vk] � 2
pq

(p−1)(p−1−q) ;
(iv) −Δpvk(x) + 1

2jk.p
1

Ŝp−1−q
1

2jk+1
[uk]

λ0( 1
2jk

x)vqk(x) = 0 in the weak sense in B1.

Moreover, we have that

∥∥λ0(vk)
q
+

∥∥
L∞(B1)

� Cq sup
B1

λ0(x)
(

1
k

)p−1

.

On the other hand, by invoking the uniform gradient estimates from [10, 16, 43] and the
L2-bound of the second derivatives from [43] we obtain

S 1
2
[|∇vk|] � C(N, p)

[
‖vk‖L∞(B1) +

∥∥λ0(vk)
q
+

∥∥ 1
p−1

L∞(B1)

]
� C∗

k
and

( 
B1

|D2vk(x)|2dx
) 1

2

< C < ∞.

Finally, 1 = Ŝ 1
2
[vk] < C

1
p−1 k−

p−2
p−1 , which yields a contradiction for k large when p > 2. �

The following result gives a non-degeneracy estimate for the Hessian at free boundary points
in the L2−average sense.
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Lemma 3.11 (Non-degeneracy for the Hessian in L2−average). Let u be a bounded weak
solution to (1.3), q � max{ 1

2 ,
p−2
2 } and Ω′ � Ω. If u is strong non-degenerate in L2−average,

that is,  
Br(x0)

u(x)dx � C(N, p, q)r
p

p−1−q

for any point x0 ∈ ∂{u > 0} ∩ Ω′, then, there holds that( 
Br(x0)

|D2u(x)|2dx
) 1

2

� C(N, p, q, λ0)r
2(q+1)−p
p−1−q .

Proof. Recall that the p−Laplace operator can be decomposed in the non-divergence form

Δpu(x) = |∇u(x)|p−2Δu(x) + (p− 2)|∇u(x)|p−4Δ∞u(x).

Moreover, it is easy to check that

(Δ∞u(x))2 =

⎛
⎝ N∑

i,j=1

uj(x)uij(x)ui(x)

⎞
⎠

2

�

⎛
⎝ N∑

i,j=1

u2
ij(x)

⎞
⎠
⎛
⎝ N∑

i,j=1

u2
j (x)u2

i (x)

⎞
⎠

= |D2u(x)|2|∇u(x)|4.
Hence,  

Br(x0)

(λ0(x)uq
+(x))2dx =

 
Br(x0)

(Δpu(x))2dx

=
 
Br(x0)

[|∇u(x)|p−2Δu(x) + (p− 2)|∇u(x)|p−4Δ∞u(x)
]2

dx

�
 
Br(x0)

[|∇u(x)|p−2|Δu(x)| + (p− 2)|∇u(x)|p−4|Δ∞u(x)|]2 dx
� (p− 1)2

 
Br(x0)

[|∇u(x)|p−2|D2u(x)|]2 dx.
(3.11)

According to the L2−bounds in [43], the last integral is finite. Now, using the Strong Non-
degeneracy in L2−average and Jensen’s inequality we obtain 

Br(x0)

(λ0(x)uq
+(x))2dx �

(
inf
Ω

λ0(y)C(N, p, q)r
pq

p−1−q

)2

. (3.12)

On the other hand, from Lemma 3.8

|∇u(x)| � sup
Br(x0)

|∇u(x)| � C3(N, p, q, λ0)r
1+q

p−1−q . (3.13)

Putting (3.12) and (3.13) into (3.11) we conclude that

 
Br(x0)

|D2u(x)|2dx �
( inf

Ω
λ0(y)C(N, p, q)

(p− 1)C(N, p, q, λ0)p−2

)2

r
2[2(1+q)−p]

p−1−q ,

which finishes the proof of the Lemma. �

We end this section with an application that can be used for the numeric approximation
of the free boundary, a stability result. To this end, decompose Ω into finite elements and let
h ∈ R+ be a discretization parameter that converges to zero, for example, h might refer to the
mesh size. Now let uh be the corresponding discrete solution to (1.3). In contrast with other
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free boundary problems, it is possible that ∂{uh > 0} ∩ Ω = ∅. For this reason, it is convenient
to define the discrete free boundary by

Fh
Ω[uh] := ∂{uh > δh} ∩ Ω,

where δh > 0 is a parameter to be determined a posteriori. Finally, let us assume an Ls−error
estimate for the solutions: we assume that there exists a continuous modulus of continuity
μ : [0,∞) → [0,∞) with μ(0) = 0 such that, for some s ∈ [1,∞] there holds

‖u− uh‖Ls(Ω) < μ(h). (3.14)

Under these assumptions we establish the following error estimate in measure for the free
boundary.

Lemma 3.12. Under the same assumptions of Theorem 3.2, take δh := μ(h)
s(p−1−q)
p−1−q+sp , then,

there exists a constant B such that

LN
(
FΩ[u] � Fh

Ω[uh]
)
� B δ

p−1−q
p

h .

Additionally, if the error estimate (3.14) holds for s = ∞, and there exists C(p, q,N,Ω′) > 0
such that

Ω′ ∩
{

0 < u < ε
p

p−1−q

}
⊂ Nε (FΩ[u] ∩ Ω′) ,

where Nε(S) := {x ∈ Ω : dist(x,S) � C(p, q,N,Ω′)ε}, then

Fh
Ω[uh] ∩ Ω′ ⊂ N

(2μ(h))
p−1−q

p
(FΩ[u] ∩ Ω′).

Proof. The proof holds directly as consequence of [27, Theorems 2.1 and 2.2] once that the
hypotheses of such theorems are checked from Theorems 1.2, 3.2 and Assumption (3.14). �

4. The limit problem

This section is devoted to prove Theorems 1.3, 1.4 and 1.5 concerning the limit as p → ∞.
First, we will prove the existence of a uniform limit for Theorem 1.3 as p → ∞. Note that since
the boundary datum g is assumed to be Lipschitz continuous we can extend it to a Lipschitz
function (that we will still call g) to the whole Ω.

Lemma 4.1. Assume max{2, N} < p < ∞ and let u ∈ W 1,p(Ω) be a weak solution to (1.3).
Then,

‖∇u‖Lp(Ω) � C1.

Additionally, u ∈ C0,α(Ω), where α = 1 − N
p with the following estimate

|u(x) − u(y)|
|x− y|α � C2.

Here C1, C2 > 0 are constants depending on N , p, q, ‖λ0‖L∞(Ω), ‖u‖Lp(Ω), ‖g‖Lp(Ω), ‖∇g‖Lp(Ω).

Proof. By multiplying (1.3) by u and using integration by parts and Hölder inequality we
obtain ˆ

Ω

|∇u|p dx =
ˆ
∂Ω

g|∇g|p−2∇g · η dHN−1 −
ˆ

Ω

λ0(x)uq+1
+ (x)dx

� LN (Ω)1−
q+1
p ‖λ0‖L∞(Ω)‖u‖q+1

Lp(Ω) + ‖g‖Lp(∂Ω)‖∇g‖p−1
Lp(∂Ω).
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Therefore,

‖∇u‖Lp(Ω) �
(
LN (Ω)1−

q+1
p ‖λ0‖L∞(Ω)‖u‖q+1

Lp(Ω) + ‖g‖Lp(∂Ω)‖∇g‖p−1
Lp(∂Ω)

) 1
p

.

Next, for p > N by Morrey’s estimates and the previous sentence, there exists a positive
constant C = C(N, p,Ω) such that

|u(x) − u(y)|
|x− y|1−N

p

� C‖∇u‖Lp(Ω). �

The next result assures that any family of weak solutions to (1.3) is pre-compact and therefore
the existence of a uniform limit for Theorem 1.3 is guaranteed.

Lemma 4.2 (Existence of limit solutions). Let {up}p>1 be a sequence of weak solutions to
(1.3). Then, there exists a subsequence pj → ∞ and a limit function u∞ such that

lim
pj→∞upj

(x) = u∞(x)

uniformly in Ω. Moreover, u∞ is Lipschitz continuous with

[u∞]Lip(Ω) � lim sup
pj→∞

C(N, pj ,Ω)‖∇upj
‖Lpj (Ω) � C(N)max

{
‖u‖�L∞(Ω), [g]Lip(∂Ω)

}
.

Proof. Due to our previous uniform bound for the gradient of up and the fact that the
boundary datum is fixed, we obtain that ‖up‖L∞(Ω) � C for all 2 � p < ∞. Hence, existence of
u∞ as an uniform limit is a direct consequence of the Lemma 4.1 combined with the Arzelà–
Ascoli compactness criterium. Finally, the last statement holds by passing to the limit in the
Hölder’s estimates from Lemma 4.1. �

Now, we show that any uniform limit, u∞, is a viscosity solution to the limit equation. Recall
that we assumed that 	 := limp→∞ q(p)/p ∈ [0, 1) exists.

Proof of Theorem 1.3. First, observe that from the uniform convergence, it holds that
u∞ = g on ∂Ω. Next, we prove that the limit function u∞ is an ∞-harmonic function in its
null set, this is,

−Δ∞u∞(x) = 0 in {u∞ = 0} ∩ Ω.

To this end, let x0 ∈ {u∞ = 0} ∩ Ω and φ ∈ C2(Ω) such that u∞ − φ has a strict local maximum
(respectively, strict local minimum) at x0. Since, up to a subsequence, up → u∞ locally
uniformly, there exists a sequence xp → x0 such that up − φ has a local maximum (respectively,
local minimum) at xp. Moreover, if up is a weak solution to (1.3) (consequently a viscosity
solution, by Lemma 2.8) we obtain

− [|∇φ(xp)|p−2Δφ(xp) + (p− 2)|∇φ(xp)|p−4Δ∞φ(xp)
]
� −λ0(xp)φ

q
+(xp) (respectively, �).

Now, if |∇φ(x0)| �= 0 we may divide both sides of the above inequality by (p− 2)|∇φ(xp)|p−4

(which is different from zero for p large enough). Thus, we obtain that

−Δ∞φ(xp) �
|∇φ(xp)|2Δφ(xp)

p− 2
− λ0(xp)φ

q
+(xp)

(p− 2)|∇φ(xp)|p−4
(respectively, �),

where the right-hand side tends to zero as p → ∞. Therefore,

−Δ∞φ(x0) � 0 (respectively, � 0).

Finally, since such an inequality is also satisfied if |∇φ(x0)| = 0 we conclude that u∞ is a
viscosity sub-solution (respectively, super-solution) in its null set.
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Next, we will prove that u∞ is a viscosity solution to

max
{−Δ∞u∞(x),−|∇u∞(x)| + u�

∞(x)
}

= 0 in {u∞ > 0} ∩ Ω.

First, let us prove that u∞ is a viscosity super-solution. To that end, fix x0 ∈ {u∞ > 0} ∩ Ω and
let φ ∈ C2(Ω) be a test function such that u∞(x0) = φ(x0) and the inequality u∞(x) > φ(x)
holds for all x �= x0. We want to show that

−Δ∞φ(x0) � 0 or − |∇φ(x0)| + φ�(x0) � 0.

Note that if |∇φ(x0)| = 0 there is nothing to prove. Hence, we may assume that

−|∇φ(x0)| + φ�(x0) < 0. (4.1)

As in the previous case, there exists a sequence xp → x0 such that up − φ has a local minimum
at xp. Since up is a weak super-solution (respectively, a viscosity super-solution by Lemma 2.8)
to (1.3) we get

− [|∇φ(xp)|p−2Δφ(xp) + (p− 2)|∇φ(xp)|p−4Δ∞φ(xp)
]
� −λ0(xp)φ

q
+(xp).

Now, dividing both sides by (p− 2)|∇φ(xp)|p−4 (which is not zero for p � 1 due to (4.1)) we
get

−Δ∞φ(xp) �
|∇φ(xp)|2Δφ(xp)

p− 2
− λ0(xp)φ

q
+(xp)

(p− 2)|∇φ(xp)|p−4
.

Passing to the limit as p → ∞ in the above inequality we conclude that

−Δ∞φ(x0) � 0,

which proves that u∞ is a viscosity super-solution.
The last part consists in proving that u∞ is a viscosity sub-solution. To this end, fix

x0 ∈ {u∞ > 0} ∩ Ω and a test function φ ∈ C2(Ω) such that u∞(x0) = φ(x0) and the inequality
u∞(x) < φ(x) holds for x �= x0. We want to prove that

−Δ∞φ(x0) � 0 and − |∇φ(x0)| + φ�(x0) � 0. (4.2)

One more time, there exists a sequence xp → x0 such that up − φ has a local maximum at xp

and since up is a weak sub-solution (respectively, viscosity sub-solution) to (1.3), we have that

−|∇φ(xp)|2Δφ(xp)
p− 2

− Δ∞φ(xp) � − λ0(xp)φ
q
+(xp)

(p− 2)|∇φ(xp)|p−4
� 0.

Thus, letting p → ∞ we obtain −Δ∞φ(x0) � 0. Moreover, if −|∇φ(x0)| + φ�(x0) > 0, as p →
∞, then the right-hand side diverges to −∞, causing a contradiction. Therefore (4.2) holds. �

Proof of Theorem 1.4. From Lemma 4.2 any sequence of bounded weak solutions (up)p>2

converges, up to a subsequence, to a limit, u∞, uniformly in Ω. This limit u∞ also fulfills (1.5)
in the viscosity sense. On the other hand, (3.5) claims that, for 0 < r � 1,

sup
Br(x0)

u(x) � 2 · 2 p
p−1−q C0r

p
p−1−q ,

for any normalized solution and any x0 free boundary point. Now, for x̂ ∈ ∂{u∞ > 0} ∩ Ω′ we
have from uniform convergence that there exist xp → x̂ with xp ∈ ∂{up > 0} ∩ Ω′. Therefore,

sup
Br(x0)

u∞(x) = lim
p→∞ sup

Br(xp)

up(x) � lim
p→∞ 2 · 2 p

p−1−q C0r
p

p−1−q = 2 · 2 1
1−� (1 − 	)

1
1−� r

1
1−� ,

which is the desired result. �
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Proof of Theorem 1.5. Any sequence of weak solutions (up)p�2 converges, up to a
subsequence, to a limit, u∞, uniformly in Ω. From Theorem 1.1 we have that

sup
Br(x0)

u(x) � C0r
p

p−1−q with C0 :=
[
inf
Ω

λ0(x)
(p− 1 − q)p

pp−1(pq + N(p− 1 − q))

] 1
p−1−q

.

As before for x̂ ∈ {u∞ > 0} ∩ Ω′ there exist xp → x̂ with xp ∈ {up > 0} ∩ Ω′. Hence we get,

sup
Br(x0)

u∞(x) = lim
p→∞ sup

Br(xp)

up(x) � (1 − 	)
1

1−� r
1

1−� .
�

As a byproduct of the previous estimates we prove that any limit solution to (1.5) is, near
the free boundary, ‘trapped’ between the graph of two multiples of dist(·, ∂{u > 0}) 1

1−� , that
is,

Corollary 4.3. Let u∞ be a uniform limit of up, solutions to (1.3), and Ω′ � Ω. Then,
for any x0 ∈ {u∞ > 0} ∩ Ω′ the following estimate holds:

C1(N, 	)dist(x0, ∂{u > 0}) 1
1−� � u∞(x0) � C2(N, 	)dist(x0, ∂{u > 0}) 1

1−� .

Proof. The upper bound for u∞(x0) follows as in Corollary 3.7. For the remaining inequality,
let us suppose that such lower bound constant does not exist. Then it should exist a sequence
xk ∈ {u∞ > 0} ∩ Ω′ such that

dk := dist(xk, ∂{u∞ > 0} ∩ Ω′) → 0 as k → ∞ and u(xk) �
d

1
1−�

k

k
.

Now, define the auxiliary function vk : B1 → R by

vk(y) :=
u∞(xk + dky)

d
1

1−�

k

.

From uniform convergence vk,p → vk locally uniformly as k → ∞, where

vk,p(y) :=
up(xk + dky)

d
p

p−1−q

k

.

Thus,

−Δpvk,p(y) + λ0(xk + dky)(vk,p)
q
+(y) in B1

in the weak sense. From classical regularity estimates vk,p is Hölder continuous (see Theo-
rem 2.6). After passing to the limit as k → ∞ we infer that vk is α−Hölder continuous for any
α ∈ (0, 1).

For this reason, vk(y) � C|y − 0|α + vk(0) � max{1, C}(dαk + 1
k ) ∀ y ∈ B1. Finally, from the

non-degeneracy result, Theorem 1.5, and the last sentence we obtain

0 <

(
1
2
(1 − 	)

) 1
1−�

� 1

d
1

1−�

k

sup
B dk

2
(xk)

u∞(x) = sup
B 1

2

vk(z) � max{1, C}
(
dαk +

1
k

)
→ 0 as k → ∞.

This contradiction concludes the proof. �

Proof of Theorem 1.6. From (3.9) we have that

|∇up(x)| � sup
Br(xp)

|∇up(x)| � 2
1+q

p−1−q C0r
1+q

p−1−q for 0 < r � 1,
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where xp ∈ ∂{up > 0} ∩ Ω′. On the other hand, any sequence of weak solutions (up)p�2 is
bounded in the W 1,s−topology for all 1 < s < ∞ (and hence we can assume, extracting
a subsequence if necessary, that up → u∞ weakly in W 1,2). Now, for x0 ∈ ∂{u∞ > 0} ∩ Ω′

there exist xp → x0 with xp ∈ ∂{up > 0} ∩ Ω′. Taking into account that up ⇀ û in L2(Ω) and
up → u∞ uniformly in Ω we conclude

 
Br(x0)

|∇u∞(x)|dx � lim
p→∞

 
Br(xp)

|∇up(x)|dx � 2
�

1−� (1 − 	)
1

1−� r
1

1−� .
�

4.1. Further properties for limit solutions

Now, we present some relevant geometric and measure theoretic properties for limit solutions
and their free boundaries. First, we prove that a version of the well-known Harnack inequality
is valid for such limit solutions in balls touching the free boundary. Such a quantitative result
is a novelty in the literature with regard to sub-linear limit problems.

Corollary 4.4 (Harnack inequality for limit solutions). Let u∞ be a limit solution to (1.3),
Ω′ � Ω and x0 ∈ {u∞ > 0} ∩ Ω′ an interior point such that d := dist(x0, ∂{u∞ > 0}) � R∞

2 ,
where R∞ comes from the limit in (3.6) as p → ∞ in the quantity R0. Then, there exists
C = C(N, 	, [u∞]Lip(Ω)) such that

sup
B d

2
(x0)

u∞(x) � Cmax

⎧⎨
⎩d

2
, inf

B d
2
(x0)

v∞(x)

⎫⎬
⎭ . (4.3)

Proof. Let z1, z2 ∈ B d
2
(x0) be points such that

inf
B d

2
(x0)

u∞(x) = u∞(z1) and sup
B d

2
(x0)

v∞(x) = u∞(z2).

Since dist(z1, ∂{u∞ > 0}) � d
2 , from Corollary 4.3 we get

u∞(z1) � C1(N, 	)
(
d

2

) 1
1−�

. (4.4)

Moreover, from the Lipschitz regularity for limit solutions we obtain

u∞(z2) � [u∞]Lip(Ω)

(
d

2
+ v∞(x0)

)
. (4.5)

Now, by choosing y ∈ ∂{u∞ > 0} such that d = |x0 − y|, we get as consequence of Theorem 1.4

u∞(x0) � sup
Bd(y)

u∞(x) � 2 · 2 1
1−� (1 − 	)

1
1−� d

1
1−� = 2 · 2 2

1−� (1 − 	)
1

1−�

(
d

2

) 1
1−�

. (4.6)

Combining (4.4), (4.5) and (4.6), we obtain (4.3). �

Corollary 4.5 (Uniform positive density). Let u∞ be a limit solution to (1.3) in B1 and
x0 ∈ ∂{v > 0} ∩B 1

2
be a free boundary point. Then for any 0 < ρ < 1

2 ,

LN (Bρ(x0) ∩ {u∞ > 0}) � θρN ,

for a constant θ > 0 that depends only on the dimension and 	.
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Proof. Applying Theorem 1.5 there exists a point ŷ ∈ ∂Br(x0) ∩ {u∞ > 0} such that,

v(ŷ) � (1 − 	)
1

1−� r
1

1−� . (4.7)

Moreover, from Theorem 1.4 there exists κ > 0 small enough depending only on 	 such that

Bκr(ŷ) ⊂ {u∞ > 0},
where the constant κ is given by

κ :=

(
(1 − 	)

1
1−�

14 · 2 1
1−� (1 − 	)

1
1−�

)1−�

.

In fact, if this does not holds, it exists a free boundary point ẑ ∈ Bκr(ŷ). Consequently, from
(4.7) we obtain that

(1 − 	)
1

1−� r
1

1−� � u∞(ŷ) � sup
Bκr(ẑ)

u∞(x) � 2 · 2 1
1−� (1 − 	)

1
1−� (κr)

1
1−� =

1
7
(1 − 	)

1
1−� r

1
1−� ,

which yields a contradiction. Therefore,

Bκr(ŷ) ∩Br(x0) ⊂ Br(x0) ∩ {u∞ > 0},
and hence

LN (Bρ(x0) ∩ {u∞ > 0}) � LN (Bρ(x0) ∩Bκr(ŷ)) � θrN ,

which proves the result. �

Definition 4.6 (ζ-Porous set). A set S ∈ R
N is said to be porous with porosity constant

0 < ζ � 1 if there exists an R > 0 such that for each x ∈ S and 0 < r < R there exists a point
y such that Bζr(y) ⊂ Br(x) \S.

Corollary 4.7 (Porosity of the free boundary). Let u∞ be a limit solution to (1.3) in Ω.
There exists a constant 0 < ξ = ξ(N, 	) � 1 such that

HN−ξ
(
∂{u∞ > 0} ∩B 1

2

)
< ∞. (4.8)

Proof. Let R > 0 and x0 ∈ Ω be such that B4R(x0) ⊂ Ω. We will show that ∂{u∞ > 0} ∩
BR(x0) is a ζ

2 -porous set for a universal constant 0 < ζ � 1. To this end, let x ∈ ∂{u∞ >

0} ∩BR(x0). For each r ∈ (0,R) we have Br(x) ⊂ B2R(x0) ⊂ Ω. Now, let y ∈ ∂Br(x) such
that u∞(y) = sup∂Br(x) u(t). By Theorem 1.5

u∞(y) � (1 − 	)
1

1−� r
1

1−� . (4.9)

On the other hand, near the free boundary, from Theorem 1.4 we have

u∞(y) � 2 · 2 1
1−� (1 − 	)

1
1−� d(y)

1
1−� , (4.10)

where d(y) := dist(y, ∂{u∞ > 0} ∩B2R(x0)). From (4.9) and (4.10) we get

d(y) � ζr (4.11)

for a positive constant 0 < ζ := ( (1−�)
1

1−�

2·2
1

1−� (1−�)
1

1−�
)1−� < 1.

Now, let ŷ, in the segment joining x and y, be such that |y − ŷ| = ζr
2 , then there holds

B ζ
2 r

(ŷ) ⊂ Bζr(y) ∩Br(x). (4.12)
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Indeed, for each z ∈ B ζ
2 r

(ŷ)

|z − y| � |z − ŷ| + |y − ŷ| < ζr

2
+

ζr

2
= ζr,

|z − x| � |z − ŷ| + (|x− y| − |ŷ − y|) � ζr

2
+
(
r − ζr

2

)
= r.

Then, since by (4.11) Bζr(y) ⊂ Bd(y)(y) ⊂ {u∞ > 0}, we get Bζr(y) ∩Br(x) ⊂ {u∞ > 0},
which together with (4.12) implies

B ζ
2 r

(ŷ) ⊂ Bζr(y) ∩Br(x) ⊂ Br(x) \ ∂{u∞ > 0} ⊂ Br(x) \ ∂{u∞ > 0} ∩BR(x0).

Therefore, ∂{v > 0} ∩BR(x0) is a ζ
2 -porous set. Finally, the (N − ξ)-Hausdorff measure

estimates in (4.8) follow from [23]. �

Particularly, Corollary 4.7 assures that the free boundary ∂{u∞ > 0} has N -dimensional
Lebesgue measure zero.

Theorem 4.8 (Convergence of the free boundaries). Let up be a sequence of solutions to
(1.3), u∞ its uniform limit. Then

∂{up > 0} → ∂{u∞ > 0} as p → ∞,

locally in the sense of the Hausdorff distance.

Proof. Given δ > 0 let Nδ(S) := {x ∈ R
N : dist(x,S) < δ} be the δ-neighborhood of a set

S ⊂ R
N . We must show that, given 0 < δ � 1 and p = p(δ) large enough, one obtains

∂{vp > 0} ⊂ Nδ(∂{v∞ > 0}) and ∂{v∞ > 0} ⊂ Nδ(∂{vp > 0}).

We proceed with the first inclusion and suppose that it does not hold. Thus, it should exist a
point x0 ∈ ∂{up > 0} ∩ (Ω \ Nδ(∂{u∞ > 0})). The last sentence implies dist(x0, ∂{u∞ > 0}) �
δ.

Now, if x0 ∈ {u∞ > 0} then by Corollary 4.3 we get

u∞(x0) � C(dist(x0, ∂{u∞ > 0})) 1
1−� � Cδ

1
1−� .

On the other hand, due to the uniform convergence, for p large enough

up(x0) �
1

100
Cδ

1
1−� > 0.

However, this contradicts the assumption that x0 ∈ ∂{up > 0}. Therefore, u∞(x0) = 0 and then
u∞ ≡ 0 in Bδ(x0), which contradicts the strong non-degeneracy property given in Theorem 1.1
since

sup
B δ

2
(x0)

up(x) � c

(
δ

2

) 1
1−�

from where the inclusion follows. The second inclusion can be proved similarly and we omit
it. �
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In the following result, we analyze the behavior of the coincidence sets for the p-variational
problem and its corresponding limiting problem. We recall the following notion of limits sets

lim inf
p→∞ Up :=

∞⋂
p=1

⋃
k�p

Uk and lim sup
p→∞

Up :=
∞⋃
p=1

⋂
k�p

Uk,

and we say that there exists the limit limp→∞ Up when lim infp→∞ Up = lim supp→∞ Up.

Theorem 4.9. Let Up := {up = 0} be the null sets of the p-dead core problems and
U∞ := {u∞ = 0} be the corresponding null set of the limiting problem. Assume that along a
subsequence up → u∞. Then, also along the same subsequence, the null sets converge, that is,

U∞ = lim
p→∞ Up.

Proof. We will show that U∞ ⊂ lim infp→∞ Up ⊂ lim supp→∞ Up ⊂ U∞. Given 0 < ε � 1
(small enough), consider Vε an ε-neighborhood of U∞. Thus, Ω \ Vε ⊂ {u∞ > 0} is a closed set.
From the continuity of u∞ there exists a positive δ = δ(ε) such that u∞(x) > δ ∀ x ∈ Ω \ Vε.
Moreover, by the uniform convergence (up to a subsequence up → u∞) we obtain that for p
large enough up(x) > δ ∀ x ∈ Ω \ Vε. Therefore Ω \ Vε ⊂ {up > 0} from where Up ⊂ Vε for
every p � 1. This implies that lim supp→∞ Up ⊂ Vε, for any ε-neighborhood of U∞. Hence, we
obtain lim supp→∞ Up ⊂ U∞ since U∞ is a compact set.

Now, let x0 ∈ U∞. We claim that there exists a sequence xp with up(xp) = 0 such that
xp → x0. In fact, from our previous estimates for up we have near the free boundary

c�[dist(x, ∂{up > 0})] p
p−1−q � up(x).

Hence, in the set Ωp = {x ∈ Ω : dist(x, ∂{up > 0}) � δ} we have that up � C(δ)(uniformly in
p). Now, as we have that up(x0) → u∞(x0) = 0, we obtain that dist(x0, ∂{up > 0}) → 0 as
p → ∞, and we conclude that, given ε > 0, for every p � p0 there is xp ∈ Up (that is, with
up(xp) = 0) such that dist(xp, x0) < ε. This shows that U∞ ⊂ lim infp→∞ Up, as we wanted to
prove. �

Definition 4.10 (Reduced free boundary). The reduced free boundary FΩ
red[u∞] is the set

of points x0 for which it holds that, given the half ball B+
r (x0) := {(x− x0) · η � 0} ∩Br(x0)

we get

lim
r→0

LN (B+
r (x0)�Ω+[u∞])
LN (Br(x0))

= 0. (4.13)

This means (cf. [18, Chapter 3]) that the vector measure ∇χΩ(Br(x0)) has a density at the
point, that is, there exists η(x0) (with |η(x0)| = 1) that fulfills the following

lim
r→0

∇χΩ(Br(x0))
|∇χΩ(Br(x0))| = η(x0).

Corollary 4.11. If x0 ∈ FΩ
red[u∞] then

Br(x0) ∩ FΩ
red[u∞] ⊂ {|(x− x0) · η(x0)| � o(r)} as r → 0+.

Proof. If we suppose that u∞(x) = 0 for (x− x0) · η(x0) � εr, then there exists c0 > 0 such
that LN (Bεr(x) ∩ {u∞ =}) � c0εr

N , which implies, according to Corollary 4.5, that

lim inf
r→0

LN (B+
r (x0)�Ω+[u∞])
LN (Br(x0))

� c0ε,

which contradicts (4.13). �
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We finish this section proving that free boundary points having a tangent ball from inside
are regular. To this end, let us introduce the following definition.

Definition 4.12 (Regular points). A free boundary point y ∈ FΩ[u] := ∂{u > 0} ∩ Ω is
said to have a tangent ball from inside if there exists a ball B ⊂ Ω+[u] := {u > 0} ∩ Ω such
that y ∈ B ∩ Ω+[u]. Finally, a free boundary point y ∈ FΩ[u] is regular if FΩ[u] has a tangent
hyperplane at y.

Theorem 4.13. A free boundary point y ∈ FΩ[u∞] for a limit solution of the problem (1.5)
which has a tangent ball from inside is regular.

Proof. The proof follows similarly to [9, Lemma 11.17], thus we only sketch the modifications
for the reader’s convenience. Let us suppose that B1(y1) is tangent to FΩ[u∞] at y and consider
the function

Φ(x) = (1 − |x− y1|) 1
1−� .

From the non-degeneracy, some multiple of Φ, say cΦ, is a lower barrier of u∞ in B1(y1). Now,
let cr > 0 be the supremum of all functions c such that u(x) � cΦ(x) in Br(y1).

Note that such values cr increase with r. Hence, by optimal regularity, cr converges to some
constant c∞ as r → 0. According to [9, Lemma 11.17], this implies the following asymptotic
behavior near the free boundary

u∞(x) = c∞〈(x− y), η(y)〉 + o
(
〈(x− y), η(y)〉 1

1−�

)
,

where η(y) = y1 − y. Therefore, the plane orthogonal to η(y) is tangent to FΩ[u∞] and, we
conclude that y is a regular point. �

In particular, the previous result reveals that at interior free boundary points verifying the
interior ball condition, limit solutions for the p−obstacle problem with zero constraint q = 0,
are regular.

5. Final comments

Note that (1.5) can be written as a fully non-linear second-order operator as follows

F∞ : R × R
N × Sym(N) −→ R

(s, ξ,X) �→ max
{−ξTX · ξ,−|ξ| + s�

}
,

which is non-decreasing in s. Moreover, F∞ is a degenerate elliptic operator in the sense that

F∞(s, ξ,X) � F∞(s, ξ, Y ) whenever Y � X in the sense of matrices.

Nevertheless, F∞ is not in the framework of [11, Theorem 3.3]. Hence, we leave open the
uniqueness of viscosity solutions to (1.5). Another open issue is to obtain the optimal regularity
of viscosity solutions to (1.5).

In the last part of this paper we include some examples to see what kind of solutions to (1.5)
one can expect.

Example 5.1 (Radial solutions). First of all, let us study the following boundary value
problem: {

−Δpu = −λ0u
q
+(x) in BR(x0),

u(x) = κ on ∂BR(x0),
(5.1)

where R, λ0 and κ are a positive constants.
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Observe that by the uniqueness of solutions for the Dirichlet problem (5.1) and invariance
under rotations of the p−Laplacian operator, it is easy to see that u must be a radially
symmetric function. Hence, let us deal with the following one-dimensional ODE

−(|v′(t)|p−2v′(t))′ = −λ0v
q
+(t) in (0,T), v(0) = 0 and v(T) = κ. (5.2)

It is straightforward to check that v(t) = Θ(1, λ0, p, q)t
p

p−1−q is a solution to (5.2), where

Θ = Θ(N,λ0, p, q) :=
[
λ0

(p− 1 − q)p

pp−1(pq + N(p− 1 − q))

] 1
p−1−q

and T :=
( κ

Θ

) p−1−q
p

.

Now, in order to characterize the unique solution of (5.1), fix x0 ∈ R
N and 0 < r0 < R.

We assume the compatibility condition for the dead-core problem, namely R > T. Thus, for
r0 = R− T the radially symmetric function given by

u(x) := Θ

[
|x− x0| −R +

(
1
Θ

) p−1−q
p

] p
p−1−q

+

= Θ [|x− x0| − r0]
p

p−1−q

+

fulfills (5.1) in the weak sense, where r0 := R− ( κ
Θ )

p−1−q
p . Moreover, the dead-core is given by

Br0(x0).
Also it is easy to see that the limit radial profile as p → ∞ becomes

u∞(x) := (1 − 	)
1

1−� (|x− x0| − r0(	))
1

1−�

+ , (5.3)

which satisfies (1.5) in the viscosity sense with Ω = BR(x0) the dead-core given by Br0(�)(x0)
for r0(	) = R− 1

1−� and g ≡ κ on ∂BR(x0).

Example 5.2 (Aronsson’s function). Let us consider the so-called Aronsson’s function,
that is, the two-dimensional function A(x, y) := (x

4
3 − y

4
3 )+ defined in Ω = B1(

√
2,
√

2). It is
a well-known fact that A is ∞−harmonic, that is, −Δ∞A = 0 in Ω \ {x = y}. Moreover, it is
easy to check that

|∇A(x, y)| =
4
3

√
x

2
3 + y

2
3 �

(
x

4
3 − y

4
3

) 1
4

= A
1
4 (x, y).

Therefore, A is a viscosity solution to (1.5) in Ω \ {x = y}.

Example 5.3. For any fixed 	 ∈ (0, 1) consider the function v : Ω ⊂ R
2 → R defined by

v(x, y) := arctan
(y
x

)
+

where Ω = B 1
10

( 1
5 , 0). Under such assumptions, it is easy to check that −Δ∞v(x) = 0 in

Ω \ {y = 0}. Moreover, one verifies that

|∇v(x, y)| =
1√

x2 + y2
� v�(x, y) in Ω \ {y = 0}.

Therefore, v is a viscosity solution to (1.5) in Ω \ {y = 0}.

Example 5.4. We remark that the radial limit profile (5.3) is always an ∞−subharmonic
function whose ∞−Laplacian remains bounded provided that 	 ∈ [14 , 1).

Indeed, from the expression for u∞ in (5.3) it is easy to check that

∇u∞(x) = (1 − 	)
l

1−� (|x− x0| − r0)
�

1−�
x− x0

|x− x0| ⇒ |∇u∞(x)| = u�
∞(x).
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and

D2u∞ (x) = (1 − 	)
1

1−�
1

1 − 	

[
	

1 − 	
(|x− x0| − r0)

2�−1
1−�

(x− x0) ⊗ (x− x0)
|x− x0|2

+|x− x0|
2�−1
1−�

(
IdN×N − (x− x0) ⊗ (x− x0)

|x− x0|2
)]

,

from where we obtain that −Δ∞u∞(x) = −((1 − 	)
1

1−� 1
1−� )

3 �
1−� (|x− x0| − r0)

4�−1
1−�

+ � 0. On the
other hand, if 	 ∈ (0, 1

4 ), then Δ∞u∞ blows up at free boundary points (compare with [31] for
a free boundary problem of obstacle type driven by the ∞−Laplacian).
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96 JOÃO VITOR DA SILVA, JULIO D. ROSSI AND ARIEL M. SALORT

25. J. J. Manfredi, ‘Regularity for minima of functionals with p-growth’, J. Differential Equations 76 (1988)
203–212.

26. J. J. Manfredi, J. D. Rossi and J. M. Urbano, ‘p(x)-Harmonic functions with unbounded exponent in
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